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Abstract: We propose a robust method for automated computation of heart 

rate (HR) from digital color video recordings of the human face. In order to 

extract photoplethysmographic signals, two orthogonal vectors of RGB 

color space are used. We used a dual tree complex wavelet transform based 

denoising algorithm to reduce artifacts (e.g. artificial lighting, movement, 

etc.). Most of the previous work on skin color based HR estimation 

performed experiments with healthy volunteers and focused to solve 

motion artifacts. In addition to healthy volunteers we performed 

experiments with child patients in pediatric intensive care units. In order to 

investigate the possible factors that affect the non-contact HR monitoring 

in a clinical environment, we studied the relation between hemoglobin 

levels and HR estimation errors. Low hemoglobin causes underestimation 

of HR. Nevertheless, we conclude that our method can provide acceptable 

accuracy to estimate mean HR of patients in a clinical environment, where 

the measurements can be performed remotely. In addition to mean heart 

rate estimation, we performed experiments to estimate oxygen saturation. 

We observed strong correlations between our SpO2 estimations and the 

commercial oximeter readings 
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OCIS codes: (170.3880) Medical and biological imaging; (100.7410) Wavelets; (100.2960) 

Image analysis. 
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1. Introduction 

Heart rate is one of the important physiological signals of a human body used by medical 

professionals to judge the physiological state. For example, resting heart rate has been 

identified as an independent risk factor (comparable with smoking, dyslipidemia or 

hypertension) for cardiovascular disease [1]. HR monitoring is vital in some cases. For 

instance, while a rise in intracranial pressure causes a decrease in HR, hypovolemic shock 

causes an increase in HR. 

At present, the gold standard techniques for measurement of the cardiac pulse such as the 

electrocardiogram (ECG) require patients to wear adhesive gel patches or chest straps that 

can cause skin irritation and slight pain. The other most used method of measuring cardiac 

pulse is Photoplethysmography (PPG). PPG is a simple and low-cost optical technique that 

can be used to measure several clinical parameters such as blood oxygen saturation, heart 

rate, blood pressure, and cardiac output [2, 3]. The principle, based on PPG consists in 

observing light intensity variations on the skin to detect the cardiovascular pulse rate. The 

PPG technology has been used in a wide range of commercially available medical devices 

such as contact pulse oximeters where red and/or infrared wavelengths are employed to 

detect the pulse wave. However contact pulse oximeters have their own difficulties such as 

measuring accuracy of the patients with cold hands or a circulatory disorder. 

On the other hand, for instance patients in pediatric intensive care units (PICU) are more 

susceptible to infections. With non-contact methods, HR monitoring of the patients without 

causing an infection will be possible. Non-contact detection is possible via high sensitivity 

cameras and webcams using ambient light as a source of illumination [4]. However PPG 

signals are highly susceptible to motion induced artifacts, particularly when dealing with 

webcams and ambient light. Independent component analysis, a blind source separation 

method, has been proposed by Poh et al. to remove noise artifacts from face imaging PPG 

signal. Standards of measurement recommend the use of ECG sensors to measure HRV 

(Heart rate variability) [5]. However, it has been shown that pulse rate variability derived 

from PPG signals can be a good surrogate of HRV at rest [6]. Although there are many 

papers in the literature on non-contact heart rate detection, most of the previous work in 

literature evaluated their algorithm with healthy volunteers [7–10]. 
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We propose a robust method for automated computation of HR from digital color video 

recordings of the human face. Webcam PPG signals were remotely recorded from 2 healthy 

volunteers (total 24 experiments at rest, during motion, under different lighting conditions) 

and 7 PICU patients (intubated and lying on the bed in face up position). In order to 

investigate the feasibility of the proposed method for clinical applications, we studied the 

relation between hemoglobin levels of the PICU patients and heart rate estimation errors. 

To test whether other physiological parameters can be measured with a simple webcam, 

we investigated measuring arterial blood oxygen saturation on 6 healthy volunteers and 3 

patients. 

2. Materials and methods 

A flow diagram illustrating the steps involved in our approach to recover the heart rate from 

the webcam videos is shown in Fig. 1. The details are explained in the following sections. 

 

Fig. 1. Flow diagram of the proposed method. 

2.1 DT-CWT (Dual-Tree Complex Wavelet Transform) 

The WT (wavelet transform) constructs a time–frequency representation of a signal. Unlike 

the Fourier Transform and the short time Fourier Transform, the WT can detect rapid 

changes in frequencies in time due to its variable window width. The wavelet transform is 

appropriate for analysis of non-stationary signals. These advantages have resulted in WT 

being increasingly used for biological signals analysis. But it has shortcomings such as shift 

variance and aliasing. For the DWT (discrete wavelet transform) the wavelet coefficients 

tend to oscillate positive and negative around singularities and a small shift of the signal will 

greatly contribute to those oscillations. This considerably complicates wavelet-based 

processing, making singularity extraction and signal modeling, in particular, very 

challenging. Furthermore aliasing occurs due to downsampling. Inverse DWT cancels this 

aliasing provided if the wavelet and scaling coefficients are not changed (e.g. noise, 

thresholding) [11]. These problems of Real DWT can be solved using CWT (Complex 

Wavelet Transform) [12]. CWT is the complex valued extension to the standard DWT. 
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Fig. 2. Decomposition with 1D DT-CWT to obtain approximation (A) and detail (D) 

coefficients at different levels. DT-CWT uses two Real DWT trees to implement its real (tree 
a) and imaginary (tree b) parts. L represents lowpass filters and H represents highpass filters. 

The CWT uses analytic filters to perform the wavelet analysis. The CWT strategy, that 

we used in this paper, is Kingsbury’s and Selesnick’s dual tree CWT (DT-CWT). It uses two 

Real DWT trees to implement its real (tree a) and imaginary (tree b) parts. DT-CWT 

decomposes a signal in terms of a complex shifted and dilated mother wavelet ψ(x) and 

scaling function φ(x). 

In Fig. 2, L represents lowpass filters and H represents highpass filters [13]. Each filtering 

operation is followed by a downsampling by two. The table of coefficients of the analyzing 

filters in the first level (Table1) and the remaining levels (Table 2) are given. 

Table 1. First level coefficients of the analysis filters 

La Ha Lb Hb 

0 0 0.01122679 0 

0.08838834 0.01122679 0.01122679 0 

0.08838834 0.01122679 0.08838834 0.08838834 

0.69587998 0.08838834 0.08838834 0.08838834 

0.69587998 0.08838834 0.69587998 0.69587998 

0.08838834 0.69587998 0.69587998 0.69587998 

0.08838834 0.69587998 0.08838834 0.08838834 

0.01122679 0.08838834 0.08838834 0.08838834 

0.01122679 0.08838834 0 0.01122679 

0 0 0 0.01122679 

Table 2. Remaining levels coefficients of the analysis filters 

La Ha Lb Hb 

0.03516384 0 0 0.03516384 

0 0 0 0 

0.08832942 0.11430184 0.11430184 0.08832942 

0.23389032 0 0 0.23389032 

0.76027237 0.58751830 0.58751830 0.76027237 

0.58751830 0.76027237 0.76027237 0.58751830 

0 0.23389032 0.23389032 0 

0.11430184 0.08832942 0.08832942 0.11430184 

0 0 0 0 
0 0.03516384 0.03516384 0 
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2.2 Experimental procedure 

We performed three sets of experiments to estimate mean heart rate (with 2 healthy and 7 

PICU participants) and oxygen saturation (with 6 healthy and 3 PICU participants). At the 

first set, twenty-four experiments were conducted indoors to evaluate the HR assessment 

method on 2 healthy volunteers (Table 3). Either indirect sunlight or fluorescent light was 

used as the illumination source. For healthy volunteers, each experiment in a session lasted 

60 s where participants were sitting on a chair in approximately 50 cm from the webcam. In 

addition, further experiments were conducted in the same manner on PICU patients of both 

gender and various ages. Experiments were performed at the Tepecik Training and Research 

Hospital, Turkey. Ethical approval was obtained prior to the study. For patients, face videos 

are recorded while participants are lying on the bed in face up position. Camera is placed in 

front of the face of the patients. Oxygen saturation experiments are performed with same 

conditions as the first set of experiments. 

2.3 Materials 

Laptop’s (Lenovo Thinkpad T430) built-in webcam was used in these experiments. All 

videos were recorded in color (24-bit RGB with three channels × 8 bits/channel) at 30 frames 

per second (fps) with pixel resolution of 640 × 480 and saved in AVI format on the laptop. In 

order to validate our results, ECG measurements are used as reference heart rate values. 

Hemoglobin levels of the patients are measured with complete blood count. Oxygen 

saturation measurements (reference values) are performed with the oximeter, Masimo Rad 

87. 

2.4 Photoplethysmography pulse extraction 

The face is automatically detected using a cascade of boosted classifier on the first frame. 

The method was originally proposed by Viola and Jones [14]. The algorithm returns the 

bounding box of the face. A skin detection (Fig. 3) is performed on the face to detect and 

gather skin pixels that contain the PPG signal [15]. The face image is converted from RGB 

color space to YCbCr space. The skin mask is generated from YCbCr color space by setting 

a threshold on the two channels as follows: 

 
77 127

133 173

Cb

Cr

 


 
 (1) 

where Cb is the blue chroma and Cr the red chroma of the color space. A spatial averaging 

operation is then computed using RGB pixel intensities in the region provided by the skin 

detection, forming the raw signal. To remove slow non-stationary trends in the raw signals, 

detrending should be applied; otherwise, the spectrum of these raw data would only contain 

large energy at DC component [16]. The three raw traces are detrended based on a 

smoothness priors approach proposed in [17], with a regularization parameter λ = 10 

(corresponding cutoff frequency is 0.059fs). The detrending method that we used operates 

like a time-varying finite-impulse response high-pass filter and the regularization parameter λ 

is related to cutoff frequency of the filter. 
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Fig. 3. Face (a) and skin detection (b). 

Subsequent processing is performed using a moving window with a specified window 

length (30 seconds) and window overlap (96.7% overlap). Window represents the part of the 

RGB traces which are considered for extracting the HR at the given instant. A Window 

moves along the time axis with increment of WindowOverlap (1sec. increment). In order to 

get better quality signal, a simple mathematical operation on RGB traces in a window is 

performed. Two orthogonal vectors R-G and R + G-2B are used. The algorithm from 

Shadinrakar et al [18] was used to stretch the RGB signal and combine the three color 

channels to give stronger resultant signal. 
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Combined PPG signals (HB Heart Beat) are then decomposed with three level DT-CWT 

to reduce artifacts. . Two approximation and six wavelet coefficients are obtained (real and 

imaginary components of the complex coefficients A3, D1, D2, D3). The frequency band [fm/2: 

fm] of each detail scale of the DT-CWT is directly related to the sampling rate of the original 

signal, which is given by fm = fs/2
l + 1

, where fs is the sampling frequency, and l is the level of 

decomposition. Since the frequency bands corresponding to the first and second 

decomposition levels are not in the expected pulse frequency range (15-7.5 Hz and 7.5-3.75 

Hz), we totally removed the coefficient vectors of these levels. 

Our proposed method uses the detail coefficients at the same scale for the threshold value 

of the coefficients. The threshold values are calculated as: 

 1.4*( ( ) 0.1* ( ))i iT mean D std D   (3) 

where Di represents values of the detail coefficients. 

Soft thresholding is applied separately to the magnitudes of the complex wavelet 

coefficients of the level three. 

 
( ) sgn( )( )

( ) 0

x T f x x x T

x T f x

    


  
 (4) 
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where x represents noisy coefficients, T represents threshold value and f(x) represents 

thresholded coefficients. After soft thresholding, denoised signal is obtained by performing 

inverse DT-CWT. 

Denoised signal is processed further to refine the peaks using a bandpass filter (64-point 

Hamming window, 0.7–4 Hz corresponds to 42-240 bpm). We calculate the Fourier 

transforms of the time signals to obtain the related power spectrum. We expected that the 

heart rate frequency corresponds to the highest power in the spectrum. Then heart rate is 

computed as 60.fhpeak. 

Heart rate values obtained for each window are recorded in an array. The most frequent 

component in the array is considered as the estimate of the heart rate. 

In order to show the contribution of the whole signal processing steps to make pulses 

more visible we plot raw and processed green channel signals (Fig. 4). 
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Fig. 4. Raw green signal (top) and processed signal (bottom). In order to improve the visibility 
of the variations the mean value of the raw green signal is subtracted. 

2.5 Oxygen saturation 

With conventional pulse oximetry “ratio of ratios” method is used for the calculation of 

oxygen saturation. Two wavelengths are usually chosen (red and near infrared). 

 
red

2

infrared

( / )

( / )

ac dc

ac dc

I I
SpO A B

I I




   (5) 

where A and B are empirically determined coefficients, Iac and Idc are respectively the 

amplitudes of the pulsatile (ac) and dc components [19]. 

In order to estimate oxygen saturation we used red and blue channels where the blue 

channel is representative of the infrared wavelength used in traditional pulse oximeter. A 

spatial averaging operation is computed using RB pixel intensities that exist on the face 

detection. Subsequent processing is performed using a moving window with a specified 

window length (10 seconds) and window overlap (96.7% overlap). We used mean and 

standard deviation of the red and blue channels as DC and AC components [20]. We 

estimated the A and B coefficients by finding the best-fit linear equation between the 

oximeter readings and the ratios of the red and blue channels. 
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3. Results 

We analyze 24 video recordings (each of them are one minute long) of 2 participants at rest 

to achieve the mean heart rate. Experiments performed at different lighting conditions (Table 

3). The ECG based HR measurement was also taken for each instance, at the same time each 

video was taken. Experiments show the proposed algorithm works well both under indirect 

sunlight and fluorescent light. 

Pearson’s correlation coefficients (Table 3) and Bland–Altman plots (Fig. 5) were used to 

quantify the level of agreement between measurements by the remote (proposed) and contact 

ECG techniques. In addition average accuracy between the estimate (Est) and the reference 

(Ref) measurement and RMSE (Root Mean Square Error) were calculated as: 

 

 
2

1

1
( ) ( )

( ) /

m

i

abs Est Ref Ref
Accuracy

NumofEx

RMSE Est i

amples

R f i
m

e


 







  

Mean HR were strongly correlated across statistical parameters, exhibiting r = >0.92. The 

differences between estimates from contact and remote measurements were plotted against 

the averages of both systems for HR. Bland-Altman analysis revealed close agreement 

between the measurements. 

Table 3. Comparison of estimated HR with ECG (Healthy volunteers). 

Volunteer A: Age 14, Male       

ECG mean heart beat 73 76 78 71 73 71 

Estimated (Indirect Sunlight) 73.8281 80.8594 80.8594 70.3125 73.8281 77.3438 

Volunteer B: Age 35, Male       

ECG mean heart beat 71 74 71 64 64 71 

Estimated (Fluorescent light) 70.3125 73.8281 73.8281 63.2813 63.2813 70.3125 

ECG mean heart beat 67 64 68 71 72 72 
Estimated (Indirect Sunlight) 66.7969 63.2813 66.7969 70.3125 73.8281 70.3125 

ECG mean heart beat 68 71 73 73 74 76 

Estimated (Indirect Sunlight) 70.3125 70.3125 73.8281 73.8281 73.8281 77.3438 

RMSE 2.0573 Correlation 0.9278 

(p<0.001) 

Accuracy 0.9799  
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Fig. 5. The lines represent the mean and 95% limits of agreement. 

In order to evaluate the performance of the proposed method on PICU patients we 

performed seven experiments with similar conditions (Fig. 6 and Table 4). During the 

experiments patients were lying on the bed. We also measured the hemoglobin levels of the 

patients. We observed higher average error rate than the first set of experiments. For normal 

hemoglobin levels error rates are similar compared with the experiments that we performed 

with healthy volunteers. For low hemoglobin levels (anemic patients) error increases. We 

calculated the linear correlation between heart rate error and hemoglobin level and found it to 

be >0.8, indicating a strong correlation. Since melanin in the epidermis and hemoglobin in 

the dermis play dominant roles in light absorption, they are responsible for variations in skin 

color. Heart rate estimation is affected by hemoglobin level. However it is also possible that 

is affected by higher error rates. 

Small movements of the volunteers and presence of aliased components from artificial 

light are possible corruption sources. However we observed that the anemia is also a very 

important factor that affects the non-contact HR estimation. 

Comparison of the results with and without DTCWT filtering revealed the contribution of 

the filtering step, which is not given here for brevity. Based on the results (Table 4), we 

conclude that our method can provide acceptable accuracy to estimate mean HR of patients 

in a clinical environment, where the measurements can be performed remotely (average 

error<3.5%). But more experiments and further improvements are needed especially for low 

hemoglobin levels. This prospective study continues with more participants. 
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Table 4. Comparison of estimated HR with ECG (PICU patients). 

Age Gender Disease Hemoglobin (g/100 ml) ECG Estimated HR 

13 years Female Diabetic ketoacidosis 10,9 100 101.9531 

14 years Male Bronchopneumonia 10,1 86 87.8906 

1 years Female Acute disseminated 

encephalomyelitis (ADEM) 

11.5 122 119.5313 

8 years Male Arteriovenous malformation 

(AVM in brain) 

11,9 73 70.3125 

6 months Male Cardiopathy 8.7 135 130.0781 

3 years Male Epilepsy + Sepsis 9.4 107 101.9531 

2 months Male Meningococcemia 8.6 130 123.0469 

      

RMSE 4.1187 Correlation 0.9915 

(p<0.001) 

Accuracy 0.9663 
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Fig. 6. Bland Altman plot for experiments with intensive care unit patients. 

We calculated oxygen saturation (SpO2) according to Eq. (5) and obtained reference 

values with commercial Masimo sensor. The A and B coefficients in Eq. (5) are estimated 

(with 95% confidence bounds) by finding the best-fit linear equation between the oximeter 
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readings and the ratios of the red and blue channels (Fig. 7). The best fit linear equation is 

SpO2 = 101.6-5.834*R. 

 

Fig. 7. Reference oxygen saturation vs estimated ratios. 

We observed strong correlations between our SpO2 estimations and the Masimo oximeter 

readings (|r| > 0.81). Since the oximeter readings did not change much during our 

experiments, we plotted the results of the 6 experiments together and showed that the 

estimation is able to track the changes in oxygen saturation (Fig. 8). 

 

Fig. 8. Oxygen saturation experiments with healthy volunteers. 

In addition to healthy volunteers we performed 3 experiments with PICU patients (Fig. 

9). We calculated SpO2 according to linear equation obtained from the previous experiments. 

We observed a correlation of 0.71 between estimated SpO2 and the oximeter readings. 
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Fig. 9. Oxygen saturation experiments with PICU patients. 

4. Conclusion 

This study presents image and signal processing techniques to remotely assess the mean HR. 

On the basis of the results from the present study, we have demonstrated the feasibility of 

using a simple webcam to measure mean heart rate. 

DTCWT is one of the most efficient methods for extracting required information from the 

corrupted data. Experimental results revealed that DTCWT processing of the corrupted data 

reduced the estimation error. 

The presented algorithm seems to be quite effective and easy to use in the daily 

monitoring of home care patients. In addition, based on the results of the experiments 

performed in the intensive care units, it can be concluded that our method could provide 

acceptable accuracy to estimate mean HR of patients in a clinical environment. Thus 

proposed method would eliminate the need of using single use probes and monitorisation 

equipment while measuring vital signals. 

Experiments performed with anemic patients resulted in higher error rates than others. 

Hemoglobin plays a dominant role in light absorption and is the main contributor of heart 

beat induced skin color variations. A lower hemoglobin level results in lower skin color 

oscillations a more noise in the signal trace. Therefore underestimation of heart rate of child 

patients (anemic patients) may be due to low hemoglobin levels . Further improvements are 

needed to reduce the estimation error for low hemoglobin levels. 

Also we need to find participants whose saturation readings change substantially during 

an experiment to able to evaluate the real performance of the method for estimating the 

oxygen saturation. 
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